y

QuickTime for Java Overview

Session 408

y

QuickTime for Java Overview

Anant Sonone and Michael Hopkins
QTJava Engineering

QuickTime and Java

* QuickTime
» Mature, cross-platform, flexible media
architecture

« Rich set of services supporting industry-
standard media

« Dynamic media, still images, virtual reality
®Java

» Full-featured modern object-oriented language

« Cross-platform deployment of applications
and applets

QuickTime for Java

*(QTJava is a cross-platform Java class library
accessing the native QuickTime media services

e Presents QuickTime “C” API as a set of
object-oriented Java classes in logical
packages

» Provides abstracted framework of media
services allowing common tasks to be
done more easily

QTJava Architecture

* QuickTime for Java relies on core services from
Java, QuickTime, and the Operating System

QTJava Supported Platforms

* Mac OS—MR]J 2.1 and above (JDK 1.1.8)

* Windows—Sun-compatible JRE 1.1 and above
* Mac OS X—J2SE™

QTJava in QuickTime 6

* QuickTime for Java 6 release

e QuickTime 6 API feature support
« Support for MPEG-4
e Support for new Idle Manager

» Complete coverage of QuickTime 4 and 5 API
» Additional functionality and services
» JDK 1.4 support (for Windows)

s

New QuickTime 6 Features

Introduction to MPEG-4

What Is MPEG-4?

* Based on the flexible component-based
file format of QuickTime

* Scaleable quality based on needs of client
» Low bandwidth for internet delivery

» Near television quality for DSL and
cable modems

* Provides support for audio and video, as
well as MIDI, music, text to speech, and
other technologies

MPEG-4 Architecture

Terminal Scene
or Client

Video Area

Audio Audio

Decoders

. - Scene Description

Scene Animation

General AAC Face/Body | .
Audio Celp Animation Video R

- I B B
Stream Manager

Local or .
Network Delivery Streams (Local or Over Network)
MP4 File .
. . Insert- DRM Object Descriptor
Visual Audio SEll Object — (IPMP) (Stream Management)

MP4 File
Format

QuickTime 6 MPEG-4
Video Support

* MPEG-4 movies stored in .mp4 files
* New video codec for video compression
» ISMA compliant
» Conforms to Profile 0 standard
» Low data rate of 64Kbits/second
» Interoperable with other systems

QuickTime 6 MPEG-4
Audio Support

* [SMA protfile levels 0 and 1
* AAC
» Provides high-quality, low bit rate audio
e Superior to MPEG-3
*Celp
» Very low bandwidth for voice and telephony
» Language specific

Additional MPEG-4 Features

* Support for native MPEG-4 streaming
* New dialogs for media import and export

MPEG-4 Settings

General "Videc}] Audio Streaming Compatibility

Video Track: Basic o

— khbits /second

536 1040 1544 2048

Frames per second: 15 fa]

Key frame every 24 frames

" Cancel ¢ oKk A

Using MPEG-4 Features
in QuickTime for Java

* MPEG-4 support is automatic!
» No API changes

» All applications that use QTJava can
support MPEG-4 without any code
changes once QuickTime 6 is installed

s

New QuickTime 6 Features

New Idle Manager API

[dle Management and
Tasking in QuickTime

* Applications that use QuickTime must call
routines to yield time to QuickTime

» MCIsPlayerEvent()
 MCIdle()

» MoviesTask()

e TaskMovie()

* These routines may be called implicitly by QTJava
¢

[dle Management and
Tasking Inefficiencies

* Difficult to determine how often QuickTime
should be called

» Movies may contain wired sprites that run
even when movie is stopped

* Calling at periodic intervals can be wasteful

» Often QuickTime doesn’t need to be called
SO cycles are wasted

New Idle Management API

* Requesting idle interval
int delay = Movie.getTimeUntilNextTask (scale);

* Setting the idle interval
myMovie.taskAll(delay);

* Setting up a callback

» Implement NextTaskNeededSooner interface
and override execute method:

public int execute() { ... }

New Idle Management
API Callback

* [nstalling a callback:
Movie.setNextTaskNeededSoonerCallback (myCallback, ...)
* When QuickTime needs time, it will call the
execute method of your callback class

* Removing a callback:

Movie.removeNextiTaskNeededSoonerCallback (myCallback, ...)

¢

Additional QuickTime 6
Features in QTJava

* Support for Flash 5
» Expanded ActionScript capabilities
« HTML text rendering
XML data exchange

* Support for VBR Sound Compression

y

New QuickTime 6 Features

Using QTJava With Swing

QTJava 6: Using QTJava
With Swing

* QTCanvas is heavyweight, making use in a swing
application problematic

o

xpaort: Movie to AV
Mowvie to AWV
Movie to Hinted Movie
Mowie tn NV Stream

]
B
M
M
M
i

QTJava 0: Using QT] With Swing

* Introduced new class—JQTCanvas
e Lightweight

» Provides most of the functionality
of QTCanvas

« Hardware accelerated on Mac OS X
o Fasy to use

JQTCanvas Limitations

e Similar to Compositor
» Lower frame rate than QTCanvas
» Cannot be used to display movie controllers

» Time-based clients must implement
DrawingNotifier interface

« SWCompositor
« MoviePresenter
o QTEffectPresenter

Using JOTCanvas

* Creating a JQTCanvas:

JQTCanvas theCanvas = new JQTCanvas
(QTCanvas.klnitialSizeNoResize, ...);

* Setting the client:

mPlayer = new MoviePlayer(mov);
theCanvas.setClient(mPlayer, true);

* Adding the JQTCanvas to a Frame:

theJFrame.getContentPane().add (theCanvas);

* Turning on Hardware Acceleration:
JQTCanvas.useMacOSXAcceleration = true;

s

-
Demo

Using JQTCanvas

QT]Java Current Features

* Enhancements in QTJava 6
» JDK 1.4 support (Windows only)

 No API level changes, transparent to the user
» New MovieMediaHandler API support
« QTVR ViewParameter get/set calls
» Public constructor for SGOutput
» Allows filenames with accented characters

QTJava Current Features

* Bug fixes
» Mac OS X dialog enhancements

» Sequence grabber fixes

« SGDataProc—The sequence grabber calls your
data function whenever any channel component
writes data to the destination movie

mGrabber.setDataProc(new MyProc());
class MyProc implements SGDataProc {
public int execute (...) throws QTEXxception {

//where you wrote the data or zero if you didn’t
write data

return 0; }}

Using the Presentation API

e New API with QT S

(Enhanced in QT 0)

* Broadcast from a sequence grabber source

e Audio from a @
CD, or DV Auc

evice such as a microphone,
10 source

e Video from a @

evice such as a DV camera,

or USB camera (CritterCam)

* Broadcast can be unicast or multicast

* Broadcast user-configurable using a

settings dialog

y

Efficient Programming

Anant Sonone
QTJava Engineering

Movie Controllers

* Movie controllers present the user with
an interface for controlling the movie

» Stop/start playback
e Jump within the timebase
» Control sound volume

Detached Controller

When to Use a
Detached Controller

* Treats movie and controller as separate
graphics entities

* Allows slaving of multiple movies to a
single controller

* Place movies in a Swing component

* Enables applications to use custom movie
controllers

Detaching a Controller
in QTJava

* Creating the canvas:
QTCanvas controllerCanvas = new QTCanvas();

* Creating the movie controller:

MovieCont_roIIer controller_ = new MovieController
(movie, mcScaleMovieToFit);

* Detaching the controller:
controller.setAttached(false);

Using the Detached
Controller (Cont.)

* Creating a QTPlayer for the controller:
QTPlayer gtPlayer = new QTPlayer(controller);

* Setting the client:

controllerCanvas.setClient(gtPlayer, true);

* Setting up the movie:

MoviePlayer moviePlayer = new MoviePlayer(movie);
movieCanvas.setClient(moviePlayer, true);

s

-
Demo

Using a Detached Controller

s

Efficient Programming

Playing a Sound File

Playing a Sound File Efficiently

* Previous examples and documentation
recommended using QTDrawable objects

* This methodo

ogy had many draw
» Required use of a QTPlayer obj

» Used explicit calls to task()
» Graphical artifacts on Mac OS X

hacks:

eCt

Playing a Sound File
Efficiently (Cont.)

* Open sound file as a movie:
Movie movie = Movie.fromFile (fileln);

* Use the TaskAllMovies class to task active movies

or Timebases:
TaskAllMovies.addMovieAndStart();

* Set the movie rate to 1 for playback and 0 to stop:
movie.setRate(1);

* Remove movie that no longer needs to be tasked:
TaskAllMovies.removeMovie();

s

Efficient Programming

QTJava Wired Sprite API

What

* Movies

* User in
target t

Are Wired Sprite Movies?

that contain interactive components

hut is translated into events which can
e movie, sprite, or track

* kvents |

ire actions which modify individual

properties of the target

Wired Sprite Movies

* [nteractive movies contain sprite elements

* Sprite is typically an image that has properties that
can be modified to achieve animation or interactivity

* Sprite Track defined by one or more key frame
samples followed by override samples

« Key frame contains shared image data and initial
properties of the sprites

« Override sample overrides properties of the sprites
« Samples are based on QTAtoms .

Challenges of Making
Wired Sprite Movies

* QTAtom architecture is hard to understand

* Native C API is difficult and tedious to use

* Platform dependencies and endian issues

* Major development learning curve

* Third-party authoring tools may be expensive

Advantages of the QTJava
Wired Action API

* Easy-to-use object-oriented API
* Platform independent

*Very low overhead
e Slight learning curve

API Overview

* Creating and

modifying wired movies

» First create a new moyvie file with a single
sprite track

» Make key frame sample containing a sprite

and all o

its shared images

e Set the s,

prite track’s properties

» Create override samples as needed to override
matrix and image index properties of the sprite

e Set actions on the sprites for specific user events

Wired Action Package

wiredsprites.ActionAtom

wiredsprites.ImageContainer

wiredsprites.SampleFrame

java.lang.Object wiredsprites.SpriteAtom

wiredsprites.SpriteTrackAtom

wiredsprites.WiredActionUtils

wiredsprites.WiredSpriteConstants

API Overview (Cont.)

* Creating new movie file:
Movie mov = Movie.createMovieFile(...);

* Add sprite track to movie and media to track:

Track spriteTrack = mov.addSpriteTrack(...);
SpriteMedia media = new SpriteMedia(spriteTrack, scale);

* Create key frame and add images for sprites:

SampleFrame keyFrame = new SampleFrame();

ImageContainer images =
ImageContainer.makelmageContainer();

for (i=0; i < nlmages; i++)
images.addSpritelmage(...);

API Overview (Cont.)

* Create sprites and set their properties:
SpriteAtom sprite = new SpriteAtom(id);
sprite.set<Properties>(...); //location, visibility, etc.

* Create actions and add to sprite:

ActionAtom spriteAction = new ActionAtom ()
spriteAction.set<action>(QTEvent,...);
sprite.setAction (spriteAction);
keyFrame.addSpriteAtom (sprite);

* Create override frame and set override properties
* Add key and override frame to media

API Overview (Cont.)

* Insert media into track:
spriteTrack.insertMedia(....)

* Create sprite track atom and set properties:

SpriteTrackAtom trackProperties = new
SpriteTrackAtom (...);

* Add sprite track properties to the media:

WiredActionUtils.setTrackProperties (media,
trackProperties);

e Add movie resources to the movie

s

-
Demo

Exercising the Wired Action APIs

y

Efficient Programming

Installing QuickTime for Java

QTJava Standard Installation
Procedure

* Mac OS X—preinstalled!
* Mac OS 9

» Select Custom Install
* Windows

» Install a Sun-compatible Java VM

e Install QuickTime
« Select Custom Install

QTJava Windows
Custom Installation

* Licensing the Installer

http://developer.apple.com/mkt/swl/
agreements.html#QuickTime

» Developer is responsible for insuring
installation is successful

* Writing a custom installer

» License individual pieces
» Modify the ini file

Who to Contact

General Developer Support

Public mailing list for QTJava Developers
lists.apple.com

For General Developer Information
QTJava SDK (Sample Code, Documentation)

developer.apple.com/quicktime/qtjava

For Seeding Enroliment
Must be Registered Apple Developer

gtjava@apple.com

’

http://developer.apple.com/wwdc2002/urls.html '

Roadmap

FF010 QuickTime:

_ Room J1
Let your voice be heard! NOW!
606 QuickTime for the Web: Room A2
Learn about web deployment and Fri., 2:00pm
groovy Flash media
607 QuickTime and MPEG-4: Room A2
Technical overview of this revolutionary Fri., 3:30pm

new media format

Tom Maremaa
Apple TechPubs
maremaa@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

